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A symmetry-based method for constructing nonlocally
related partial differential equation systems

George W. Bluman® and Zhengzheng Yang®
Department of Mathematics, University of British Columbia, Vancouver,
British Columbia V6T 172, Canada

(Received 30 October 2012; accepted 15 August 2013; published online 4 September 2013)

Nonlocally related partial differential equation (PDE) systems are important in the
analysis of a given PDE system. In particular, they are useful for seeking nonlocal
symmetries. It is known that each local conservation law of a given PDE system
systematically yields a nonlocally related PDE system. In this paper, a new and com-
plementary method for constructing nonlocally related PDE systems is introduced.
In particular, it is shown that each point symmetry of a PDE system systemati-
cally yields a nonlocally related PDE system. Examples include nonlinear reaction-
diffusion equations, nonlinear diffusion equations, and nonlinear wave equations. The
considered nonlinear reaction-diffusion equations have no local conservation laws.
Previously unknown nonlocal symmetries are exhibited through our new symmetry-
based method for two examples of nonlinear wave equations. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4819724]

. INTRODUCTION

A symmetry of a partial differential equation (PDE) system is any transformation of its solution
manifold into itself, i.e., a symmetry transforms any solution of the PDE system to a solution of the
same system. In particular, continuous symmetries of a PDE system are continuous deformations
of its solutions to solutions of the same PDE system. Consequently, continuous symmetries of PDE
systems are defined topologically and hence not restricted to just point or local symmetries. Thus,
in principle, any nontrivial PDE system has symmetries. The problem is to find and use symmetries.
Practically, to find a symmetry of a PDE system systematically, one is essentially restricted to
transformations acting locally on some finite-dimensional space, whose variables are not restricted
to just the independent and dependent variables of the PDE system. From this point of view, local
symmetries, whose infinitesimals depend at most on a finite number of derivatives of the dependent
variables of the given PDE system, constitute only a subset of the total set of symmetries of a PDE
system. Otherwise, there exist nonlocal symmetries of a PDE system.' However, when one directly
applies Lie’s algorithm to find nonlocal symmetries, the coefficients of the infinitesimal generators
should essentially involve integrals of the dependent variables and their derivatives. It is difficult to
set up and obtain solutions of corresponding determining equations for such coefficients.

In Ref. 5, a systematic procedure was introduced to seek nonlocal symmetries (potential sym-
metries) for a given PDE system through potential systems that naturally arise from its conservation
laws. A related heuristic approach to find nonlocal symmetries, called quasilocal symmetries, was
presented in Refs. 6 and 7, where rich sets of examples were exhibited, especially those involving
the gas dynamics equations.

An equivalent nonlocally related PDE system can play an important role in the analysis of a given
PDE system. Each solution of such a nonlocally related PDE system yields a solution of the given PDE
system, and, conversely, each solution of the given PDE system yields a solution of the nonlocally
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related PDE system. These corresponding solutions are obtained through connection formulas. More
importantly, the relationship between the solutions is not one-to-one. Hence, for a given PDE system,
one could be more successful when applying a standard method of analysis, especially a coordinate
independent method, to a nonlocally related PDE system. For instance, through a nonlocally related
PDE system, one can systematically find nonlocal symmetries and nonlocal conservation laws of
a given PDE system. It turns out that such nonlocal symmetries and nonlocal conservation laws
can arise as local symmetries and local conservation laws of nonlocally related PDE systems. Thus,
any method depending on local symmetry analysis is valid for nonlocally related PDE systems.
When nonlocal symmetries can be found for a given PDE system, it may be possible to use such
symmetries systematically to generate further exact solutions from its known solutions, to construct
invariant solutions, to find linearizations, or find additional nonlocally related PDE systems (see, e.g.,
Refs. 8-11).

A systematic procedure for finding nonlocally related PDE systems is presented in Ref. 4
and references therein. Here one constructs a tree of nonlocally related systems that consists of
potential systems and subsystems. The potential systems arise naturally from local conservation laws.
However, open problems remain: How can one further systematically extend a tree of nonlocally
related PDE systems for a given PDE system, and, of particular importance, if the given system has
no local conservation law and no known nonlocally related subsystem?

In this paper, we present a new systematic method for constructing nonlocally related PDE
systems for a given PDE system through one-parameter Lie groups of point transformations that
leave its solution manifold invariant (point symmetries). In particular, we show that a nonlocally
related PDE system (inverse potential system) arises naturally from each point symmetry of a PDE
system. As a consequence, one is able to further extend the conservation law-based method for
the construction of trees of nonlocally related PDE systems. For a given PDE system, we show
that nonlocally related PDE systems arising from its point symmetries can also yield nonlocal
symmetries.

This paper is organized as follows. In Sec. II, we introduce the new systematic method to con-
struct nonlocally related PDE systems. In Sec. III, the new method is used to construct nonlocally
related PDE systems for nonlinear reaction-diffusion equations, nonlinear diffusion equations, and
nonlinear wave equations. In Sec. IV, the point symmetries for the inverse potential systems con-
structed in Sec. III are shown to yield nonlocal symmetries for the considered example equations.
Finally, in Sec. V, the new results in this paper are summarized and open problems are posed.

In this work, we use the package GeM for Maple'? for symmetry and conservation law analysis.

Il. NEW METHOD: NONLOCALLY RELATED PDE SYSTEMS ARISING
FROM POINT SYMMETRIES

Consider a PDE system of order / with two independent variables (x, f) and m dependent
variables u = (u', ..., ™) given by

R°[u] = R°(x,t,u, du,d*u,...,8u)y=0, o=1,...,s, (2.1)

where d'u denotes the ith order partial derivative of u.

A systematic conservation law-based method for constructing nonlocally related PDE systems
of the PDE system (2.1) was presented in Ref. 5. Here, the starting point is to use a nontrivial local
conservation law of the PDE system (2.1):

D;®[u] 4+ D,W¥[u] =0. 2.2)

Based on the conservation law (2.2), one constructs a corresponding nonlocally related PDE system
(potential system) of the PDE system (2.1) given by

vy = ®fu],
v, = —W[u], (2.3)
R°u]l=0, o=1,...,s.
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In this paper, instead of using a conservation law as the starting point, we present a new
systematic method to construct a nonlocally related PDE system through the use of an admitted
point symmetry as the starting point.

Suppose the PDE system (2.1) has a point symmetry with infinitesimal generator

3 0 3
X=§&x,t,u)— +t(x,t,u)— + Z n'(x, t,u)—. By introducing canonical coordinates cor-
0x Jat P ou!
responding to X,
X =X(x,t,u),
T =T(x,t,u), (2.4)

U =Ux,t,u), i=1,...,m,

satisfying
XX =0,
XT =0,
(2.5)
XU' =1,

XU =0, i=2,...,m,

one maps X into the canonical formY = %, while the PDE system (2.1) is mapped to an invertibly

equivalent PDE system in terms of the canonical coordinates (X, T, U) with U = (U', . .., U™). Since
an invertible transformation maps a symmetry of a PDE system to a symmetry of the transformed
system, Y is the infinitesimal generator of a point symmetry of the invertibly equivalent PDE system.
Consequently, the invertibly equivalent PDE system is invariant under translations in U'. It follows
that the invertibly equivalent PDE system is of the form

RO(X,T,U,dU,...,38'U)=0, o=1,...,s, (2.6)

where U = (U2, ..., U™).
Introducing two new variables a and g for the first partial derivatives of U', one obtains the
equivalent intermediate system

o= U},
B=UL, 2.7
ROX,T,U,a,B,0U0,...,0 7, 0"718,0'0)=0, o=1,...,s,

where R(X, T,U,«, B,0U, ..., 0" 'a,3'"'B,9'U) = 0 is obtained from R°(X, T, U, aU, ...,
8'U) = 0 after making the appropriate substitutions. By construction, the intermediate system (2.7)
is locally related to the PDE system (2.6), and hence locally related to the given PDE system (2.1).

Excluding the dependent variable U' from the intermediate system (2.7), one obtains the inverse
potential system

ax = Br,

_ . . . (2.8)
RO(X,T,U,a,B,0U0,...,07 ', 07'8,0'0) =0, o=1,...,s.

Since the inverse potential system (2.8) is obtained by excluding U' from the intermediate system
(2.7), and U' cannot be expressed as a local function of X, T and the remaining dependent variables
(U , @, B), and their derivatives, it follows that the inverse potential system (2.8) is nonlocally related
to the PDE system (2.7). In particular, the intermediate system (2.7) is a potential system of the
inverse potential system (2.8). Here, if (a, 8, U?, ..., U") = (f(x, 1), g(x, 1), B*(x, D), ..., W"(x,
1)) solves the inverse potential system (2.8), there exists a family of functions U '=hnl(x, 1) + C,
where C is an arbitrary constant, such that («, 8, U Lo, Uuh= (f(x, D), g(x, ), ' (x, 1) + C, K2 (x,
D, ..., h"(x, 1)) solves the intermediate system (2.7). By projection, (U', ..., U") = (h'(x, ) + C,
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R (x, ©), ..., K"(x, 1)) is a solution of the PDE system (2.6). Thus, the correspondence between the
solutions of the inverse potential system (2.8) and those of the PDE system (2.6) is not one-to-one.
It follows that the inverse potential system (2.8) is nonlocally related to the PDE system (2.6), and
hence nonlocally related to the given PDE system (2.1).

Based on the above discussion, we have proved the following theorem.

Theorem 1. Any point symmetry of a PDE system (2.1) yields a nonlocally related inverse
potential system given by the PDE system (2.8).

Corollary 1. Consider a scalar PDE given by
MIZF(x7t5u19”"un)9 (2'9)
where u; = 2% Let 8 = u,. Then the scalar PDE,

=
B =D F(x,t,B,...,Bu-1), (2.10)

is locally related to the inverse potential system obtained from the invariance of the scalar PDE (2.9)
under translations in u.

Proof. Introducing new variables « and 8 for the first partial derivatives of u, one obtains the
intermediate system

o = Uy,
B—u,. @2.11)
a=F(x,t,B,...8.-1),

locally related to the PDE (2.9). Excluding the dependent variable u from the intermediate system
(2.11), one obtains the inverse potential system

Oy =/3t7
a=Fx,t,8,...,Bi-1)

From Theorem 1, the inverse potential system (2.12) is nonlocally related to the PDE (2.9). Further-
more, one can exclude the dependent variable o from the inverse potential system (2.12) to obtain
the subsystem given by the scalar PDE (2.10).

Since the excluded variable o can be expressed from the equations of the inverse potential
system (2.12) in terms of B and its derivatives, the scalar PDE (2.10) is locally related to the inverse
potential system (2.12). O

(2.12)

Remark 1. A similar relationship between the scalar PDEs (2.9) and (2.10) appears in Ref. 13.

Remark 2. Connection between the symmetry-based method and the conservation law-based
method. The symmetry-based method to obtain a nonlocally related PDE system does not require
the existence of a nontrivial local conservation law of a given PDE system. Thus, the new method
is complementary to the conservation law-based method for constructing nonlocally related PDE
systems. In particular, for the conservation law-based method, the constructed nonlocally related
PDE system is a potential system of the given PDE system. For the symmetry-based method, the
directly constructed intermediate system is locally related to the given PDE system. In turn, the
intermediate system is a potential system of the inverse potential system. The symmetry-based
method involves the reverse direction of the conservation law-based method.

Remark 3. The situation for a PDE system with at least three independent variables. The
symmetry-based method can be adapted to a PDE system which has at least three independent
variables. For simplicity, consider a scalar PDE with n > 3 independent variables x = (x, ..., x")
and one dependent variable u:

R(x,u, du, 3%u, ..., d'u) = 0. (2.13)
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The general case can be considered in a similar way. Suppose the scalar PDE (2.13) has a point
symmetry with the infinitesimal generator X. In terms of canonical coordinates given by

X! =Xi(x,u), i=1,...,n,
U=U(x,t,u),

(2.14)

where
Xx'=0, i=1,...,n,
XU =1,

(2.15)

the infinitesimal generator X maps into the canonical form Y = % In terms of (X, U) coordinates

with X = (X', ..., X"), the scalar PDE (2.13) becomes an invertibly related PDE of the form
R(X,3U,d%U,...,3'U)=0. (2.16)

Introducing the new variables o = (o', ..., a" for the first partial derivatives of U, one obtains
the equivalent locally related intermediate system

o =Uyi, i=1,...,n,
§ (2.17)
R(X,o,dc...,0 ') =0,

where R(X, a, da, ..., 3" 'a) = 01is obtained from R(X, dU, 82U, ..., 3'U) = 0 after making the
appropriate substitutions. Excluding U from the intermediate system (2.17), one obtains the inverse
potential system

oté(j —af(, =0,i, j=1,...,n,

B (2.18)
R(X,a,dc, ..., 'a) =0.

The inverse potential system (2.18) is nonlocally related to the scalar PDE (2.16), and hence
nonlocally related to the scalar PDE (2.13). Moreover, since the PDE system (2.18) has curl-type
conservation laws, it could possibly yield nonlocal symmetries of the scalar PDE (2.13) from local
symmetries of the inverse potential system (2.18).% 1415

lll. EXAMPLES OF INVERSE POTENTIAL SYSTEMS

In Sec. II, we introduced a new systematic symmetry-based method for constructing nonlocally
related PDE systems (inverse potential systems) of a given PDE system. In this section, we illustrate
this method by several examples.

A. Nonlinear reaction-diffusion equations

Consider the class of nonlinear reaction-diffusion equations

up — ey = Q(u), (3.1

where the reaction term Q(u) is an arbitrary constitutive function with Q,, # 0. One can show
that a nonlinear reaction-diffusion equation (3.1) has no nontrivial local conservation laws for any
such Q(u). Thus, it is impossible to construct nonlocally related PDE systems for a nonlinear
reaction-diffusion equation (3.1) by the conservation law-based method.

On the other hand, a nonlinear reaction-diffusion equation (3.1) has point symmetries. Thus,
one can construct nonlocally related PDE systems for a nonlinear reaction-diffusion equation (3.1)
through the symmetry-based method introduced in Sec. II. The point symmetry classification of the
class of nonlinear reaction-diffusion equations (3.1) is presented in Table 1,'® modulo its group of
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TABLE I. Point symmetry classification for the class of nonlinear reaction-
diffusion equations (3.1).

O(u) No. Admitted point symmetries

: _ 2 _ @
Arbitrary 2 X = e X; = 3
u(a#0,1) 3 Xl,Xz,X3:14”%—()a—})t%—%x%
u —_ 0 O [
e 3 X],Xz,X4—£—3t§—§x§8 ,
ulnu 4 X1, X2, X5 = ue' 5., X = 2¢' 5= — xue' 5

equivalence transformations

f=ajt+as,

U = aqu + as, 3-2)
— ay

0= 22

1. The case when Q(u) is arbitrary

For arbitrary Q(u), a nonlinear reaction-diffusion equation (3.1) has the two exhibited point
symmetries X; and X,. Therefore, using the symmetry-based method one can use interchanges of
x and u and also ¢ and u to construct two inverse potential systems for a nonlinear reaction-diffusion
equation (3.1).

a. Inverse potential system arising from Xy. After an interchange of the variables x and u, a
nonlinear reaction-diffusion equation (3.1) becomes the invertibly related PDE given by

Xuu — Q(u)x,f

Xp=——. (3.3)
‘xu

Corresponding to the invariance of PDE (3.3) under translations of its dependent variable x,

one introduces the variables v and w for the first partial derivatives of x to obtain the locally related

intermediate system

V= Xy,
W= (3.4)
v = Quv’
Excluding x from the intermediate system (3.4), one obtains the inverse potential system
v[ = Wy,
vy — Q(M)U3 (35)
w=—"--.

v2

Moreover, one can exclude w from the inverse potential system (3.5) to obtain its locally related

subsystem
v, — Q(w)v?
v = (U—Qz) . (3.6)

Since the scalar PDE (3.6) is in a conservation law form and a nonlinear reaction-diffusion
equation (3.1) has no local conservation laws, it follows that there is no invertible transformation
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that relates the scalar PDE (3.6) and the nonlinear reaction-diffusion equation (3.1). Consequently,
the scalar PDE (3.6) is nonlocally related to the nonlinear reaction-diffusion equation (3.1).

b. Inverse potential system arising from X,. After an interchange of the variables 7 and u, a
nonlinear reaction-diffusion equation (3.1) becomes

12— QUL + 12t — 2titytyy + 2ty =0, (3.7)

which is not in solved form and has mixed derivatives.
Corresponding to the invariance of PDE (3.7) under translations of its dependent variable ¢, one
introduces two new variables « = t, and 8 = t, to obtain the locally related intermediate system
o =1y,
B =1, (3.8)
B — Qu)B’ + oy — 2aBa, + o’ = 0.

Excluding 7 from the intermediate system (3.8), one obtains a second inverse potential system for a
nonlinear reaction-diffusion equation (3.1) given by

a, — By =0,

3.9)
B> — Q) + Bl — 2B, + B, = 0.
The constructed inverse potential systems for a nonlinear reaction-diffusion equation (3.1) (Q(u)
is arbitrary) are illustrated in Figure 1.

2. Inverse potential system arising from X3 when Q(u) = u®

When Q(u) = u®, (a # 0, 1), the corresponding class of nonlinear reaction-diffusion
equations (3.1) has one additional point symmetry X3. For simplicity, we consider the case when a
=3,i.e., Q(u) = u’. The general case is considered in a similar way. Canonical coordinates induced
by X3 are given by

X = xu,
t

T = - (3.10)
X

U=—Inx.

In (X, T, U) coordinates, the corresponding nonlinear reaction-diffusion equation (3.1) becomes the
invertibly related PDE

—3U3; —2XU;y — XUy — UsUr + 10TU3Ur + Uxx — 4TUrUxx
(3.11)
+4T?UUxx +4T*UUrr +4TUxUrx — 8T?UxUrUryx = 0.

(3.1)

N

(3.5) 3.9)

FIG. 1. Constructed inverse potential systems for a nonlinear reaction-diffusion equation (3.1) (Q(u) is arbitrary).
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3.1)

N

35| [G13)] |39

FIG. 2. Constructed inverse potential systems for the nonlinear reaction-diffusion equation (3.1) (Q(u) = u?).

Accordingly, introducing the new variables « = Uy and B = Uy, one obtains the locally related
intermediate system

a = Uy,
B ="Ur,
2 3 3.3 2 2 (3'12)
— 30 —2Xo’ — X°a” —a°B+ 10Ta"B + axy —4TBay
+4T?Bax + 4T*a*Br + 4TaBx — 8T*aBBx = 0.

Excluding U from the intermediate system (3.12), one obtains a third inverse potential system of the
corresponding nonlinear reaction-diffusion equation (3.1) given by
ar = Bx,
— 30 —2Xa® — X3 — B + 10Ta?B + ay — 4T Bax (3.13)
+4T%B%ax + 4T%a*Br + 4TaBy — 8T afBx = 0.

The constructed inverse potential systems for the nonlinear reaction-diffusion equation (3.1)
(Q(u) = u?) are illustrated in Figure 2.

Moreover, since the PDE systems (3.5) and (3.13) do not have the same number of point
symmetries, it follows that there is no invertible transformation relating these two PDE systems.
Hence, the PDE systems (3.5) and (3.13) are nonlocally related. Similarly, the PDE systems (3.9)
and (3.13) are also nonlocally related.

3. Inverse potential system arising from X, when Q(u) = e"

When Q(u) = €, the nonlinear reaction-diffusion equation (3.1) has one additional point
symmetry X4. Canonical coordinates induced by X, are given by

X =u+2lnx,
t

T = = (3.14)
X

U= -2Inx.

In (X, T, U) coordinates, the corresponding nonlinear reaction-diffusion equation (3.1) becomes the
invertibly related PDE
—2U; —2Uy — XUy — UgUr + 6TURUr +4Uxx — 8TUrUxx
(3.15)
+4T?U7Uxx +4T*UxUrr + 8T UxUrx — 8T*UxUrUrx = 0.

It follows that the introduction of the new variables ¢ = Uy and ¢ = Uy yields the locally related
intermediate system

¢ = Uy,

Y =Ur,

—2¢° —2¢° — ¢’ — *Y + 6T’V + 4¢x — 8T Ypx
+4T2 2Py + 4T 9> Yr + 8T pyrx — 8T Yy = 0.

(3.16)
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3.1)

N

35|  [G1D]  [39)]

FIG. 3. Constructed inverse potential systems for the nonlinear reaction-diffusion equation (3.1) (Q(u) = €").

Excluding U from the intermediate system (3.16), one obtains a third inverse potential system of the
corresponding nonlinear reaction-diffusion (3.1) given by

or = Vx,
—2¢> —2¢° — ¥’ — ¢’ + 6T P*Y + 4y — 8T Yo (3.17)
+ 4T 2py + AT2p* Y7 + 8Ty — 8T Py = 0.

The constructed inverse potential systems for the nonlinear reaction-diffusion equation (3.1)
(O(u) = €") are illustrated in Figure 3.

Moreover, since the PDE systems (3.5) and (3.17) do not have the same number of point
symmetries, it follows that there is no invertible transformation relating these two PDE systems.
Hence, the PDE systems (3.5) and (3.17) are nonlocally related. Similarly, the PDE systems (3.9)
and (3.17) are also nonlocally related.

4. The case when Q(u)=uiInu
When Q(u) = u Inu, the nonlinear reaction-diffusion equation (3.1) has two additional point
symmetries Xs and Xg.
a. Inverse potential system arising from Xs. Canonical coordinates induced by Xs are given by
X =x,
T=t, (3.18)
U=e'lnu.
In (X, T, U) coordinates, the corresponding nonlinear reaction-diffusion equation (3.1) becomes
Ur = Uxx + e Uz. (3.19)

Introducing the new variables p = Ux and ¢ = Uy, one obtains the locally related intermediate
system

p = Ux,
q="Ur, (3.20)
qg=px+ep’

Excluding U from the intermediate system (3.20), one obtains the inverse potential system of the
corresponding nonlinear reaction-diffusion (3.1) given by

Pr = d4x,
(3.21)

q=px+e p.

Moreover, excluding g from the inverse potential system (3.21), one obtains the locally related
subsystem of the inverse potential system (3.21) given by

pr = pxx + 2¢" ppx, (3.22)
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3.1)

N

(321 ((3.5)] ((3.9)] (3.26)

FIG. 4. Constructed inverse potential systems for the nonlinear reaction-diffusion equation (3.1) (Q(«) = u In u).

which is in a conservation law form. Since the PDE (3.22) is in a conservation law form and any
nonlinear reaction-diffusion equation (3.1) has no local conservation laws, it follows that the PDE
(3.22) is nonlocally related to the corresponding nonlinear reaction-diffusion equation (3.1).

b. Inverse potential system arising from Xs. Canonical coordinates induced by X¢ are given by

X =e“u,
=1 (3.23)
U= %eftx

In (X, T, U) coordinates, the corresponding nonlinear reaction-diffusion equation (3.1) becomes

e MUyx +2XU; —4XIn XU;

Ur = 3.24
T 402 (3.24)
Introducing the new variables r = Uy and s = Ur, one obtains the locally related intermediate system
r=U X
s =Ur, (3.25)

e T yry +2Xr3 —4X1In Xr3

4r2 '
Excluding U from the intermediate system (3.25), one obtains the inverse potential system of the
corresponding nonlinear reaction-diffusion (3.1) given by

S =

rr = Sx,
e Try +2Xr3 —4XIn Xr3 (3.26)
4r2 '
Excluding s from the inverse potential system (3.26), one obtains the locally related subsystem of
the inverse potential system (3.26) given by
e Try +2Xr3 —4XIn Xr?
rr = )
4r2 ¥

S =

(3.27)

which is in a conservation law form.
The constructed inverse potential systems for the nonlinear reaction-diffusion equation (3.1)
(O(u) = uln u) are illustrated in Figure 4.

B. Nonlinear diffusion equations
As a second example, consider the class of scalar nonlinear diffusion equations
Uy = K (vx) Uxx s (328)

where K (v,) is an arbitrary nonconstant constitutive function. The point symmetry classification of
its locally related class of PDE systems,

Ux = U,

vy = K(uuy,

(3.29)
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TABLE II. Point symmetry classification for the class of PDE systems (3.29).

K(u) No. Admitted point symmetries

Arbitrary 4 Yi=2 Yo=2 Ys=xi+2l+vl,
Yi= 2

W (1 # 0) 5 YhYLY%YmYS_x“-F%t +(1+2 )(w

et 5 Y],YQ,Y3,Y4,Y6—)CBJL +2 +(2x+v) ki

w2 00 Yl,Yz,Y35Y4,Y5 (n= —2)

Y; = —xv{,x + (xu + v)u + 22 30
Ysg = —x(2t + v2) o T 442 z + u(6t + 2xuv + vz)%
+4tv%,
Yoo = F0,0)& —u?G(v, L,
where (F (v, t), G(v, t)) is an arbitrary solution
of the linear system: F; = Gy, F,, =G
H—ﬁekarctanu 3 Y],YQ,Y3,Y4,
Yo=vik +arg —(1+u?) & —xf

is listed in Table II,*!” modulo its group of equivalence transformations given by

t=at + a,

X = azx + aqv + as,

_  actaju

W= —7,

az + azu (3.30)
U = agx + ajv + ag,
2
_ as + aqu
g @ Faw
aj
where ay, . . ., ag are arbitrary constants with a,(aza; — asag) # 0.

By prO]eCthIl of the symmetries in Table II, one sees that for arbitrary K (vx) there are
four point symmetrles of a nonlinear diffusion equation (3.28), namely, Y| = 3x Y, = gl,
Yg—xax +2t —l—vav andY4_—

1. Inverse potential system arising from Y

Since a nonlinear diffusion equation (3.28) is invariant under translations of its independent
variable x, one can interchange x and v to generate an invertibly related PDE of a nonlinear diffusion
equation (3.28) given by

K (Xl) Xu

X =
2
Xy

(3.31)

Introducing new variables w = x,, and y = x;, one obtains the locally related intermediate system

W = Xy,

y=5 (3.32)
K () wo

Y=

Excluding x from the intermediate system (3.32), one obtains the inverse potential system

Wy = Yo,
K ( i ) w, (3.33)

y=—4—.
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Moreover, one can exclude the variable y from the inverse potential system (3.33) to obtain the
locally related subsystem of the inverse potential system (3.33) given by

1
w, = <M> . (3.34)

w?

2. Inverse potential system arising from Y,

Since a nonlinear diffusion equation (3.28) is invariant under translations of its independent
variable ¢, one can interchange ¢ and v to obtain an invertibly related PDE given by

Iy
1P —K (——) (2tytitey — tityy — tityy) = 0. (3.35)

v

Introducing new variables & = t,, and 8 = t,, one obtains the locally related intermediate system

o =1,

= Iy,
p (3.36)
o> — K (—E> (2aBo, — Ba, — (xzﬂx) =0.

o
Excluding ¢ from the intermediate system (3.36), one obtains the inverse potential system
ay = ,Bva
(3.37)

o> — K (—g) (2eBa, — B, — a?B,) = 0.

3. Inverse potential system arising from Y3

Since a nonlinear diffusion equation (3.28) is invariant under the scaling symmetry generated
by Y; =x % + 2t % +v %, one can use a corresponding canonical coordinate transformation given
by

t

X=-.

=2 (3.38)
=

V=Inx

to map a nonlinear diffusion equation (3.28) into the invertibly related PDE

1+TVr +2XVy
Vr

— 8X2Vx Vr Vrx +4X2VEVrr 42X Vyx V2 + 4X2VEVyx) = 0.

_ VXVT2+K< >(—4XVTVTX+VTT+4XVXVTT -V}

(3.39)

Introducing new variables ¢ = Vyx and ¥ = V7, one obtains the locally related intermediate system

¢ = Vx,
v =Vr,

3.40
PV < (%) (—4X Yy + Y7 +4Xyr — 32 (340

—8X2pYyx +4X2P* Y + 2X oY + 4X* Y ¢x) = 0.
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Excluding V from the intermediate system (3.40), one obtains the inverse potential system

or = V¥x,
|+ Ty +2X¢
v

—8X2p Yy + 4X2¢%r + 2XPy? + 4X 2y px) = 0.

— ¢y’ + K ( ) (—4X Yy + Yr +4X Py — P2 (3.41)

4. Inverse potential system arising fromY,

From its invariance under translations of its dependent variable v, one can apply directly the
symmetry-based method to a nonlinear diffusion equation (3.28). Letting u = v,, z = v,, one obtains
the corresponding locally related intermediate system

u= U)ﬁ
7=, 3.42)
z = K(u)u,.

Excluding v from the intermediate system (3.42), one obtains the inverse potential system
Uy = Zx,

z = K(u)u,.

(3.43)

Excluding z from the inverse potential system (3.43), one obtains the locally related subsystem of
the inverse potential system (3.43) given by the class of nonlinear diffusion equations

uy = (K (W)uy), . (3.44)

5. Inverse potential system for a nonlinear diffusion equation (3.44)

Now take a nonlinear diffusion equation (3.44) as the given PDE. The point symmetry classi-
fication for the class of nonlinear diffusion equations (3.44) is presented in Table IIL,'® modulo its
group of equivalence transformations given by

I =ast +a,
X =asx + as,
i = agu + as, (3.45)
I
K ==K,
a4
where ay, . .., ag are arbitrary constants with ayasag # 0.

There are three point symmetries of a nonlinear diffusion equation (3.44) for arbitrary K(u):

X, = % X, = % and X3 = x% + ZI%. Therefore, one can construct three inverse potential

TABLE III. Point symmetry classification for the class of nonlinear diffu-
sion equations (3.44).

K(u) No. Admitted point symmetries
Arbitrary Xi=2 X;=2 Xg=xl 422
ut(u #0) XI,XZyX3yX4:X%+% 2

X1, X2, X3, X5 = x 2 +2.2

dx ou

X1, X2, X3, Xy (u = —%), X6 =x2% —3xul

[V )
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systems for a nonlinear diffusion equation (3.44) through the symmetry-based method. Take X;
for example. From its invariance under translations in x, one can employ the hodograph transforma-
tion interchanging x and u to obtain the invertibly related PDE

K
X =— ( (”)) . (3.46)
Xy /),
Accordingly, letting p = x,, and g = x;, one obtains the locally related intermediate system
P = Xu,
q = xtv

(3.47)

(%)
q=- :
p u

Excluding the variable x from the intermediate system (3.47), one obtains the inverse potential
system

Pt = 4qu,

(K(u)) (3.48)
q=— .
p u

Finally, after excluding the variable ¢ from the inverse potential system (3.48), one obtains the
locally related subsystem of the inverse potential system (3.48) given by

pr=— (K(u)) . (3.49)
p uu

The constructed inverse potential systems for a nonlinear diffusion equation (3.28) (K (v,) is
arbitrary) are illustrated in Figure 5.

C. Nonlinear wave equations

As a third example, consider the class of nonlinear wave equations
= (W)s, (3.50)

with an arbitrary nonconstant constitutive function c(u).

In Refs. 4 and 10, it is shown that one can apply any invertible transformation to a PDE system
with two or more dependent variables to seek additional nonlocally related subsystems of the given
PDE system from exclusions of the resulting dependent variables. Theorem 1 shows that the use
of an invertible transformation that is a point symmetry of a given PDE system yields a nonlocally
related PDE system (inverse potential system). We now use point symmetries of the potential system
of a nonlinear wave equation (3.50) given by

Ux = Uy,

(3.51)
v = cz(u)ux

to obtain additional nonlocally related PDE systems for a nonlinear wave equation (3.50). For

arbitrary c(u), the potential system (3.51) has the point symmetries Y; = 2, Y, = 2, Y; = 2,

(3.28)

N~

\ (3.33) \ \ (3.37) \ \ (3.41) \ \ (3.43)

(3.48)

FIG. 5. Constructed inverse potential systems for a nonlinear diffusion equation (3.28) (K (vy) is arbitrary).
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Yy=x % + ta%, and Y, where Y, represents the infinite number of point symmetries arising from
the linearization of the potential system (3.51) through the hodograph transformation (interchange
of independent and dependent variables).

Due to its invariance under translations in v and ¢, for arbitrary c(u), the potential system
(3.51) has the point symmetry with the infinitesimal generator % — 8% Corresponding canonical
coordinates yield the invertible point transformation

X =x,
T =u,
(3.52)
U=t+v,
V =v.

The point transformation (3.52) maps a potential system (3.51) into the invertibly related PDE
system

VxUT — VTUX —1= 0,
(3.53)
Vi 4+ A(T)Ux — 2(T)Vx =0,

which is invariant under translations in U and V.
From the invariance of a PDE system (3.53) under translations in V, one introduces two new
variables A and B for the first partial derivatives of V to obtain the intermediate system

A = Vy,
B=1Vr,

(3.54)
AUy — BUy — 1 =0,

B+ cA(T)Uyx — c*(T)A = 0.
Excluding V from the intermediate system (3.54), one obtains the inverse potential system
Ar = By,
AUr — BUx —1=0, (3.55)
B+ cA(T)Ux — ¢*(T)A = 0.

Since one can solve for A and B from the last two equations of the inverse potential system
(3.55), it is straightforward to exclude A and B from the inverse potential system (3.55) to obtain its
locally related scalar PDE

Urr + X(T) (*(T)Uxx — UxxU7 — Urr Uy — 2Urx + 2UrxUrUyx) 356
— 2e(T)e(T) (Ux — U3Ur) = 0. '
In Sec. IV, we prove that the PDE (3.56) is nonlocally related to the nonlinear wave
equation (3.50) through the symmetry classifications of these two classes of PDEs.

Remark 4. Another equivalent straightforward method to obtain the scalar PDE (3.56) is by
excluding V directly from the PDE system (3.53) through cross-differentiation.

The coordinates in the point transformation (3.52) are a choice of canonical coordinates corre-
sponding to the point symmetry Y. The inverse potential system, arising from the invariance of the
PDE system (3.53) under translations in U, yields the locally related scalar PDE

c(u) (vivuu — 20,0 Vyy + Uiy 02 cz(u)vxx) — 2c/(u)vau =0. (3.57)

By interchanging x and v, it is straightforward to show that the PDE (3.57) is invertibly related to
the linear wave equation constructed in Ref. 10:

Xoo = (¢72(x,), - (3.58)
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IV. EXAMPLES OF NONLOCAL SYMMETRIES ARISING FROM THE SYMMETRY-BASED
METHOD

In the framework of nonlocally related PDE systems, nonlocal symmetries of a given PDE
system (2.1) can arise from point symmetries of any PDE system in a tree of nonlocally related PDE
systems that includes (2.1).

In the conservation law-based method, from constructed nonlocally related PDE systems, three
different types of nonlocal symmetries can be sought for a given PDE system (2.1):*

1. Nonlocal symmetries arising from point symmetries of potential systems of (2.1).

2. Nonlocal symmetries arising from point symmetries of nonlocally related subsystems of (2.1).

3. Nonlocal symmetries arising from point symmetries of nonlocally related subsystems of po-
tential systems of (2.1).

For Type 1, a point symmetry of a potential system of (2.1) yields a nonlocal symmetry of (2.1)
if and only if the infinitesimal components corresponding to its given variables (x, 7, u) involve the
nonlocal variables of the potential system. For Types 2 and 3, one must trace back to see whether
the obtained point symmetry yields a nonlocal symmetry of (2.1).

In the symmetry-based method, one can seek further nonlocal symmetries arising from point
symmetries of the constructed inverse potential systems as well as their subsystems.

In Sec. I, we constructed several inverse potential systems for nonlinear reaction-
diffusion equations (3.1), nonlinear diffusion equations (3.28) and (3.44), and nonlinear wave
equations (3.50). For a nonlinear reaction-diffusion equation (3.1), one can show that each point
symmetry of the constructed inverse potential systems yields no nonlocal symmetry of (3.1). In this
section, it is shown that for nonlinear diffusion equations (3.28) and (3.44), and nonlinear wave
equations (3.50), nonlocal local symmetries do arise from some of the constructed inverse potential
systems (or the locally related subsystems of such inverse potential systems). Most importantly,
some previously unknown nonlocal symmetries are obtained for the nonlinear wave equation (3.50)
when c(u) = u~2 or c(u) = u-3.

A. Nonlocal symmetries of nonlinear diffusion equations

In Tables II and III, we presented the point symmetry classifications for the classes of nonlinear
diffusion equations (3.29) and (3.44).

Proposition 1. The symmetry X¢ yields a nonlocal symmetry of the corresponding nonlinear
diffusion equation (3.28) with K (u) = us.

Proof. Suppose the symmetry Xg yields a local symmetry of the nonlinear diffusion
equation (3.28) with K(u) = u~3. Since the nonlinear diffusion equation (3.28) and the poten-
tial system (3.29) are locally related, Xs must also yield a local symmetry X¢ of the potential
system (3.29). Consequently, there must exist a differential function f[u, v] such that, in evo-
lutionary form, X = (—3xu — xzux)% + flu, v]% is a local symmetry of the potential system
(3.29). Since vy, = u, v, = u‘gux, and u;, = (u‘%ux)x, one can restrict f[u, v] to be of the form
f(x,t,u, v, uy, Uy, ...) depending on x, ¢, u and the partial derivatives of u with respect to x. First,
suppose f[u, v] is of the form f(x, ¢, u, v, u,). Applying f(éoo) to the potential system (3.29), one
obtains

fo + futte + fovy + futter = —3xu — x%u,, .
fo+ fate + fov + futtie = 2Gxu + xPuu=Su, + Dy(=3xu — xu)u™3 :

on every solution of the potential system (3.29). After making appropriate substitutions and equating
the coefficients of the term u,,, one obtains f, = 0. By similar reasoning, one can show that
f(x,t,u, v, uy, Uy, ...) has no dependence on any partial derivative of u# with respect to x. Hence,
flu, v] is of the form f(x, ¢, u, v). Consequently, if X yields a local symmetry of the nonlinear
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diffusion equation (3.28) with K (1) = u~3, then X, must be a point symmetry of the corresponding
potential system (3.29).

Comparing Tables II and III, one immediately sees that symmetry X¢ does not yield a point
symmetry of the corresponding potential system (3.29). This follows from the fact that when
Ku) = u’%, the potential system (3.29) has no point symmetry whose infinitesimal components
corresponding to the variables (x, f) are the same as those for X¢. Hence, X¢ yields a nonlocal
symmetry of the nonlinear diffusion equation (3.28) with K (u) = us. O

Now consider the class of scalar PDEs (3.34). The equivalence transformations for this class
arise from the six infinitesimal generators

E 9 E 9 + 2K E 9 + 2K 9
= —, = — —_— 0, =w— —
T T dw | w oK 0w IK
“4.2)
E 9 + 2K 9 E t 9 K 9 E 9
= V— —_—, =1l— — ., - —.
YT o K ot oK ot
Thus, the group of equivalence transformations for the class of PDEs (3.34) is given by
U =azv—+a,
I = ast + as,
w = asw + ap, (4.3)
7= a3(asw J;az)zK,
asw
where ay, . .., ag are arbitrary constants with azasas # 0.

In Table IV, we present the point symmetry classification for the class of PDEs (3.34), modulo
its group of equivalence transformations (4.3).

By similar reasoning as in the proof of Proposition 1, one can show that, for K (1) = U3 , the
point symmetry Vs of the PDE (3.34) yields a nonlocal symmetry of the corresponding intermediate
system (3.32), which is locally related to the nonlinear diffusion equation (3.28). Hence, V5 yields
a nonlocal symmetry of the nonlinear diffusion equation (3.28) with K (1) = w3,

Moreover, comparing Tables III and IV, one also sees that when K (1) = u’g, since its infinites-
imal component for the variable « has an essential dependence on the variable v, the symmetry Vs of
the corresponding PDE (3.34) yields a nonlocal symmetry of the nonlinear diffusion equation (3.44),
which cannot be obtained through its potential system (3.29). By similar reasoning, when
K(u) = u 2, one can show that the symmetries V¢ , V7, and V, of the PDE (3.34) yield nonlocal sym-
metries of the corresponding nonlinear diffusion equation (3.44). In addition, when K (1) = eu u?,

TABLE IV. Point symmetry classification for the class of PDEs (3.34).

Admitted point symmetries in Admitted point symmetries in
K (1/w) K(u) No. (t, v, w) coordinates (t, v, u) coordinates
Arbitrary ~ Arbitrary 3 Vi=2 Vo=2 Vi=2 40l Vi, V2, V3
wH ut 4 Vi, Vy, V3, Vi, Vy, V3,
Vi=Q+ v — 2w Vi=Q+mvd +2ul
w3 w3 5 Vi Vo, Vi Vi(u=-2), Vi,V V3 Vi (= = 2),
V5:3vw%—v2% V5:—3uv%—v2%
w? u? 0 Vi Va, V3 Vi(u=-2), Vi, V2, V3, Va (= —2),
V6:—vw%+2t%, V6:uv%+2ta%,
V=42 L vt — Qt +vPHw, V=422 4 4vrd +Qt + vl
Voo = G(t, v) 72, where G(t, v) Voo = —u>G(t, v)-, where G(, v)
satisfies G; = Gy satisfies G; = Gy

2 -] 9 f) d 2.9
evw euu 4 Vi, Vo, V3, Vg =vs + 240 Vi, V2, V3, Vg = v — 2u” o
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one can show that Vg yields a point symmetry Vg = (x + 21})% + va—av - 2u2% of the potential

system (3.29) whose infinitesimal component for the variable x has an essential dependence on the
variable v. Consequently, Vg yields a nonlocal symmetry of the nonlinear diffusion equation (3.44)
when K (1) = evu=2.

Next, consider the class of PDEs (3.49). The equivalence transformations for this class arise
from the six infinitesimal generators

E="E 8+2K8E a+21<8
= —, = U— D = _— _—,
Y ok 2T Py 9K w
] 9 9 ] 9 ] ’
Es=t— —K— ,Es=— B¢ =u’— —3up— — 2Ku—.
ot 0K ot du ap 0K

Correspondingly, the six-parameter group of equivalence transformations for the PDE class (3.49)
is given by

u=au—+a,

t = ayt + as,
5 =ap. (4.5)
2.2
g=%2%g
ay ’
and
_ u
u =
1-— aegll
P=1 (4.6)
p=(—au)p,
K =( —asu)’K,
where ay, . . ., ag are arbitrary constants with arazay # 0.

In Table V, we present the point symmetry classification for the class of PDEs (3.49), modulo
its group of equivalence transformations given by (4.5) and (4.6).

Similar to the situation in Proposition 1, when K (1) = ﬁek aretantt “the point symmetry Ws of
the PDE (3.49) yields a nonlocal symmetry of the corresponding intermediate system (3.47), which
is locally related to the nonlinear diffusion equation (3.44). Hence, W5 yields a nonlocal symmetry
of the nonlinear diffusion equation (3.44) with K(u) = ﬁe* arctanit - By similar reasoning, the
symmetry W also yields a nonlocal symmetry of the nonlinear diffusion equation (3.44) with K(u)
=u">

Taking the equivalence transformation (4.6) into consideration, one can obtain more nonlocal
symmetries for the class of nonlinear diffusion equations (3.44) from the corresponding class of PDEs
(3.49). In particular, the equivalence transformation (4.6) maps u* into #"(1 + agit) "+ e into

1+ aﬁﬁ)‘zeﬁ'ﬁ”. Moreover, the symmetries W3 and W, are mapped into W3 and W, respectively.

TABLE V. Point symmetry classification for the class of PDEs (3.49).

K(u) No. Admitted point symmetries
i _ 2 _ 0 )

Arbitrary 2 W=, Wy =215 + Py

ut 3 Wl,Wz,W3:2u%+(u—2)p%

et 3 Wlﬁwz,W4=2%+p%

lJr#ekarclanu 3 W, Wy,

Ws :2(1+u2);—ufp(6uf}»)%
u=? 4 Wi W Wi (u=—2),We=u’5; —3pug;

Z
u
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One can show that when K(u) = (1 + agu) ~* * 2, W3 = 2u(1 + agu) & — p(6agu — pu + 2)%;
when K (u) = (I + agu) % ™", Wy = 2(1 + agu)* & — p(6a2u + 6as — 1) Similar to the situ-
ation in Proposition 1, one can show that W3 and W, yield nonlocal symmetries of the corresponding
nonlinear diffusion equations (3.44).

Remark 5. Comparing Tables II and V, one concludes that when K(u) = ﬁe’\ arctanit - the

nonlocal symmetry yielded by W; corresponds to the nonlocal symmetry yielded by Yy. When K(u)
= u~ 2, the nonlocal symmetry yielded by W corresponds to a nonlocal symmetry yielded by Y.

B. Nonlocal symmetries of nonlinear wave equations

We now use the subsystem (3.56), locally related to the inverse potential system (3.55), to obtain
previously unknown nonlocal symmetries for the class of nonlinear wave equations (3.50).

In Ref. 19, the point symmetry classification was obtained for the class of nonlinear wave
equations (3.50), which is presented in Table VI, modulo its group of equivalence transformations

X =a1x + as,

I = axt + as,
U = aszu + ag, “.7)
_ a
¢ = —c,
a
where ay, . . ., a¢ are arbitrary constants with a;a,a3 # 0.

The equivalence transformations for the PDE class (3.56) arise from the five infinitesimal
generators

0 0 0
E, ZB_T’EZZB_X’E3= 30
4.8)

E-T2+x2 tuvl g 7o x9  .0
=T— — —,Es=-T— — +c—.
C T aT aX au’ 3T X | dc

Correspondingly, the five-parameter group of equivalence transformations for the class of PDEs
(3.56) is given by

ag

T=—T+a,
as
X = aasX + ay, (4.9)
U=aU+ as,
¢ = asc,
where ay, ..., as are arbitrary constants with asas # 0.

TABLE VI. Point symmetry classification for the class of nonlinear wave
equations (3.50).

c(u) No. Admitted point symmetries

Arbitrary 3 X :%,Xzz%,ngxa% +t%

ut 4 Xl,Xz,X3,X4=le%+u%

et 4 X1, X3, X3, Xs =xL + L

u2 S XX, Xa, Xy (= —2),Xe =20 +rud,
w3 5 X1, X, X3, Xy (1 = —2), Xy = 22 — 3xu i
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TABLE VII. Point symmetry classification for the class of PDEs (3.56).

Admitted point symmetries in (x, u) components of admitted
c(T) c(u) No. (X, T, U) coordinates symmetries
Arbitrary Arbitrary 3 W, = 3 , Wy = () x> Wz = F)"
(X +fT AE)dE) % + Uy Wi = (x + [“ 2(E)dg) &
™ ut 4 Wi, Wy, W3 («(T) = T%), Wa, W3 (c(u) = u),
Wy =T% +Qu+ DX Wo=ul +Qu+Dxl
+Hu+ DUy
e’ e 4 Wi, Wa, W3 (c(T) =€), Wa, W3 (c(u) = "),
3 3 Gl X 3 Gl
W5ZW+ZXW+UW ‘VVSZVE'FZX%
T2 u=? 5 Wi, Wa, Wi, Wa,
Wi (c(D)=T"2), Wy (u=—2), W3 (cw)=u=2), W4 (n=—2),
_ 2.0 9 U 9
i i We=U35 +TUgr — 5 3% W(,_u(t+u)ﬁ—’u+—$E
T3 u 3 5 Wi, W, WI»WZ,
_2 - 2.«
W3 (c(T)=T73), Wy (n=-3), Wi (cw)=u"3), Wy (u=—-3%),
205 ¥ 2.,
=(XT73]T3)@ W7=(xu73u3)3u
+(XT73 — £y % FouTs — )L

The point symmetry classification for the class of PDEs (3.56), modulo its equivalence trans-
formations (4.9), is presented in Table VII.

Remark 6. In order to determine whether a symmetry W of a PDE (3.56) yields a nonlocal
symmetry of the corresponding nonlinear wave equation (3.50), we need to trace back to the nonlinear
wave equation (3.50) using the PDE system (3.53). Since the PDE (3.56) excludes the dependent
variable V of the PDE system (3. 53) we need to investigate how the variable V changes under the
action induced by W. Since p~!( av) = 5 — E’ where p ~! is the inverse of the transformation
(3.52), the infinitesimal components for the variables x and u remain invariant when tracing back.

This is why we only present the (x, #) components of admitted symmetries in Table VII.

Proposition 2. The symmetries W and W yield nonlocal symmetries of the corresponding
potential systems (3.51).

Proof. If the symmetry Wy yields a local symmetry Wy of the potential system (3.51) with
c(u) = u~?, then, in evolutionary form, We = (U? — TUUr + %Ux) 7 + F[U, V135, where
the differential function F[U, V] must depend on X, 7, U, V and the partial derivatives of U and
V with respect to X and T. By applying Wg to the corresponding PDE system (3.53), which is
invertibly related to the potential system (3.51), one can show that F[U, V] must be of the form
F(X,T,U,V,Uyx,Ur). Applying W(ﬁoo) to the corresponding PDE system (3.53) and making ap-
propriate substitutions, one can prove that the resulting determining equation system is inconsistent.
Hence, Wg yields a nonlocal symmetry of the potential system (3.51) with c(u) = u~ 2.

By similar reasoning, it turns out that Wy also yields a nonlocal symmetry of the potential
system (3.51) with c(u) = ui. O

When c(u) is arbitrary, in (x, ¢, u, v) coordinates, W3 = (x + f” c2($)d§)% +(t+ v)a%. Itis
straightforward to show that W3 is a point symmetry of a potential system (3.51) for arbitrary c(u),
whose infinitesimal component for the variable ¢ has an essential dependence on v. By projection,
W; yields a nonlocal symmetry of a nonlinear wave equation (3.50) for arbitrary c(u).

When c(u) = u~?2, the infinitesimal components for the variables (x, u) of the symmetry W
depend on the variable v. By Remark 6, W¢ yields a nonlocal symmetry of the corresponding
nonlinear wave equation (3.50).

Consider the case when c(u) = u=s. If the symmetry W yields a local symmetry W5 of the
corresponding nonlinear wave equation (3.50), then W, = W7 + f [u]%, where the differential
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function f[u] depends on x, f, u and the partial derivatives of u with respect to x and 7. Since
o~} (%) = % - %, when tracing back to the corresponding potential system (3.51), the infinitesimal
component for the variable v must be equal to — f[u]. Thus W5 would also yield a local symmetry
of the corresponding potential system (3.51), which is a contradiction since W5 yields a nonlocal
symmetry of the corresponding potential system (3.51). Hence W yields a nonlocal symmetry of

the nonlinear wave equation (3.50) with c(u) = us.

Remark 7. One can show that the symmetries W4 and W5, respectively, yield point symmetries
W, =W, + (n+ l)V% and Ws = W5 + V% of the corresponding PDE systems (3.53). In terms
of (x,t,u,v) coordinates, Wy = u- + Qu—+ DxL + (u+ Dt +(u+ DvE and Ws =L
+ Zx% + t% + v%. Hence, by projection, W4 and W5 yield point symmetries of the nonlinear
wave equations (3.50) with c(u) = u* and c(u) = €“, respectively.

Remark 8. Comparing the symmetries listed in Ref. 10, one sees that the symmetries W¢ and
W, yield previously unjcnown nonlocal symmetries of the nonlinear wave equations (3.50) with c(u)
=u"? and c(u) = u~3, respectively.

V. CONCLUSION AND OPEN PROBLEMS

In this paper, we presented a new systematic symmetry-based procedure to construct nonlocally
related PDE systems (inverse potential systems) for a given PDE system. The starting point for this
method is any point symmetry of a given PDE system. Our new symmetry-based method yields
previously unknown nonlocally related PDE systems for nonlinear reaction-diffusion equations,
nonlinear diffusion equations, and nonlinear wave equations as well as nonlocal symmetries for
nonlinear diffusion and nonlinear wave equations. Most importantly, through the symmetry-based
method, we have obtained previously unknown nonlocal symmetries for nonlinear wave equations
with c(u) = u~2 or c(u) = u~5.

Potential systems are under-determined for a given PDE system with more than two independent
variables. It is known that point symmetries of such potential systems cannot yield nonlocal symme-
tries of the given PDE system without additional gauge constraints relating potential variables and
their derivatives.?® In the case of three or more independent variables, the inverse potential systems
generated by the symmetry-based method presented in this paper involve natural gauge constraints
due to their construction from curl-type conservation laws. Are there examples of such inverse
potential systems, especially for given nonlinear systems of physical interest, that yield nonlocal
symmetries?
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